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Institut des Sciences Nucléaires (UMR CNRS/IN2P3–UJF), F-38026 Grenoble Cedex, France

Received: 11 July 2001 / Revised version: 9 November 2001
Communicated by V. Vento

Abstract. Form factors are calculated in the point form of relativistic quantum mechanics for the lowest
energy states of a system made of two scalar particles interacting via the exchange of a massless boson. They
are compared to the exact results obtained by using solutions of the Bethe-Salpeter equation which are well
known in this case (Wick-Cutkosky model). The relevance of the comparison is examined by considering
other relativistic quantum-mechanics approaches where results are known or have been obtained recently.
Deficiencies of the point-form approach together with the single-particle current are emphasized. They point
to quite sizeable contributions of two-body currents. These ones are required to fulfil current conservation
in any case and to reproduce the high momentum transfer behaviour expected from the Born amplitude.

PACS. 11.10.St Bound and unstable states; Bethe-Salpeter equations – 11.30.Cp Lorentz and Poincaré
invariance – 13.40.Gp Electromagnetic form factors

1 Introduction

Calculations of form factors often retain in a first ap-
proximation the single-particle current (impulse approx-
imation). In most approaches, this contribution has to
be completed by at least two-body currents, especially
to fulfil current conservation. This also holds for rela-
tivistic approaches where a Lorentz-covariant calculation
of the single-particle current does not necessarily imply
a proper account of the whole physical process, which,
among other things, can contain contributions that may
be considered as relativistic ones in a different formalism.
For each relativistic approach, it is therefore important to
test the degree of validity by comparing its predictions to
a case where an “exact” calculation can be performed, as
far as the full relativistic covariance properties are con-
cerned. This especially includes the independence of the
space-time surface chosen to describe the dynamics in the
various forms of relativistic quantum mechanics, for in-
stance [1]. To make the comparison relevant and instruc-
tive, this calculation should also incorporate minimal in-
gredients related to the description of the physical process,
like boson-exchange–based interactions.

It is generally considered that the Bethe-Salpeter equa-
tion with a one-boson exchange kernel provides such a ref-
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erence calculation. This approach has been used in its full
complexity by Zuilhof and Tjon, for instance [2], for the
deuteron case. It currently represents a necessary step in
the description of a two-body system, often made with
approximations however. In the simplest case, the Bethe-
Salpeter equation can only involve a one-boson exchange
kernel with spinless particles and constant form factors.
The single-particle current has then a unique expression
and is conserved. This defines a minimal interaction model
whose properties can be reproduced in an instant-form
formalism for instance, by considering the sum of all
time-ordered diagrams corresponding to what the Bethe-
Salpeter equation allows one to sum up. It may not be rel-
evant as far as the full field theory underlying the model
is concerned. Many corrections should be considered like
renormalized vertex form factors, crossed diagrams, off-
shell effects, etc. They are essential for a comparison to
an experiment. However, all of them will similarly affect
a relativistic quantum-mechanics approach. For a test like
the one we have in mind, aiming to see whether minimal
physics ingredients together with relativity are properly
accounted for, they cancel out. In some sense, this “exact”
calculation will play the role of an experiment, whose un-
derlying physics can be tuned at will, however. Thus, to
make the test, one has only to worry about the derivation
of the interaction and the associated currents to be used in
the particular form of relativistic quantum mechanics, due
to the effective character of the related degrees of freedom
that such an approach implies. Concerning the interaction,



462 The European Physical Journal A

some work going beyond a phenomenological parametri-
sation has been done recently for the instant-form case [3].
Concerning the currents, which could contain for instance
contributions due to removing off-shell effects in the orig-
inal interaction, the task is much more complicated. For
the time being, only the comparison of predictions with
the “exact” calculation can tell us about their importance.

A particular case of interest for our purpose is the
Wick-Cutkosky model [4,5], where the Bethe-Salpeter
equation [6] is solved with an interaction kernel resulting
from the exchange of a scalar zero-mass boson between
two distinguishable scalar particles (one-boson ladder ap-
proximation). Solutions can be obtained relatively easily
due to an extra hidden symmetry. Using the expressions
of the Bethe-Salpeter amplitudes, calculations of form fac-
tors can be performed for the lowest bound states that
we intent to consider here. Contrary to other approaches,
there is no need to add two-body currents. The contri-
bution of the single-particle current is sufficient in the
present model to ensure current conservation, which can
be checked with the expressions of the matrix elements
of the current1. This model was used by Karmanov and
Smirnov as a test of the description of form factors in the
light-front approach for systems composed of scalar par-
ticles with small binding energy [8]. They used the non-
relativistic expression, −α2/4n2, for the binding energy,
which differs from the exact one, but this does not seem to
affect their conclusion. Interestingly enough, the compari-
son of the “exact” calculation with the non-relativistic one
does not show much difference up to Q2 � 100m2, where
m is the constituent mass. Beyond, relativistic corrections
with a log character slowly begin to show up.

We propose to make a similar test for the point form
of relativistic quantum mechanics, which is one of the
forms proposed by Dirac, beside the instant and the front
forms [1]. This form, which is much less known than the
other two, was first advocated by Sokolov [9] and applied
later to the calculation of form factors by Lev [10] and
Klink [11]. It has been recently used for a calculation of
form factors of the deuteron [12] and the nucleon [13]. In
both cases, the form factors decrease faster with Q2 than
the non-relativistic ones. In the first case, the discrepancy
with experiment tends to increase while, in the other one,
it almost vanishes in the lower Q2 range considered by
the authors. For the highest Q2, one can guess from their
results an under-prediction which tends to increase with
the momentum transfer. We will not extend in this paper
on the questions that are raised by these observations. We
will only present a few results which, by themselves, are
quite instructive. They are obtained using an approach
identical to the one employed in refs. [12,13], except for
spin complications that are absent here. A more complete
analysis of the results will be presented elsewhere [14].

In the present study, we calculate the ground-state
(l = 0) form factor as well as a transition form factor

1 This result together with some of the expressions used in
the present paper for the Wick-Cutkosky model are part of
a work in preparation. A preliminary presentation was made
in [7].

to the first radial excited state. Different couplings are
considered, corresponding to states weakly, moderately
and strongly bound (α = 1, 3 and 2π in terms of the
QED coupling). The last value implies a total zero mass
of the system, which is an extreme (unphysical) case, nev-
ertheless interesting to look at, too. Momentum transfers
up to 100 times the constituent mass squared are consid-
ered. These different cases will provide a sample of results
which are significant enough to test the validity of the
single-current approximation in the point-form approach
and give insight into the results presented in refs. [12,13].
Some attention will be given in particular to the limits
M → 0 and Q2 → ∞, which a relativistic approach should
be able to deal with. As often done, we will compare the
results of this point-form approach with “non-relativistic”
ones. These last ones are essentially characterized by the
Galilean boost that allows one to relate systems in differ-
ent frames, while the description of the system itself may
already involve some relativity. We do not expect them to
do well but they provide benchmarks that a relativistic
approach should improve upon.

2 Expression of the single-particle matrix
element in different approaches

The contribution which we are interested in is shown in
fig. 1. The general expression of the corresponding matrix
element between two states with l = 0, possibly different,
is given by

√
2Ef 2Ei 〈f |Jµ|i〉 = F1(q2) (Pµ

f + Pµ
i ) + F2(q2) qµ, (1)

where qµ = Pµ
f − Pµ

i . Current conservation imposes con-
straints on the form factors F1(q2) and F2(q2). For an
elastic process, F2(q2) has to vanish but this result auto-
matically stems from symmetry arguments alone. It does
not imply that current conservation holds at the operator
level, as it should. For an inelastic process, the following
relationship has to be fulfilled:

F1(q2) (M2
f − M2

i ) + F2(q2) q2 = 0. (2)

Fig. 1. Representation of a virtual-photon absorption on a
two-body system with the kinematical definitions.
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2.1 Form factors using the Bethe-Salpeter amplitudes

For the model under consideration here, the general (and
exact) expression of the matrix element of the current,
which reduces to a single-particle one in this case, can be
written in terms of the Bethe-Salpeter amplitudes, χ

P
(p),

√
2Ef 2Ei 〈f |Jµ|i〉 = i

∫
d4p

(2π)4
χ̄

Pf

(
1
2
Pf − p

)

×
(
Pµ

f + Pµ
i − 2 pµ

)
(p2 − m2) χ

Pi

(
1
2
Pi − p

)
. (3)

For the Wick-Cutkosky model, the Bethe-Salpeter ampli-
tudes take the form of a relatively simple integral rep-
resentation, i.e. for the lowest energy state with a given
orbital angular momentum l:

χ
P
(p) =

∫ 1

−1

dz
gn(z) Y m

l (p̂) |p |l
(m2 − 1

4P 2 − p2 − z P · p − iε)n+2
, (4)

with n = l + 1. In this expression, gn(z) is the solution
of a second-order differential equation [4,5], that can be
solved easily.

2.2 Form factors in the non-relativistic limit

In contrast with a full relativistic calculation, a non-
relativistic one can be easily performed. Using wave func-
tions that are solutions of a Schrödinger equation, general
expressions for both elastic and inelastic form factors can
be obtained. In the Breit frame, they read

F1(q2) =
∫

dp
(2π)3

φf

(
p − 1

4
q

)
φi

(
p +

1
4
q

)
,

F2(q2)
q

4m
= −

∫
dp

(2π)3

× φf

(
p − 1

4
q

)
p
m

φi

(
p +

1
4
q

)
. (5)

It can be checked that the above form factors verify the
current conservation condition, eq. (2), provided the in-
teraction is local. The second form factor vanishes in the
elastic case.

Actually, expressions given by eqs. (5) can be used with
wave functions issued from an equation going beyond the
non-relativistic Schrödinger one, like the one we will use
in practice in the following, which involves some relativity
(see eq. (7)). The above form factors are then obtained by
relying on a Galilean boost. When referring in the follow-
ing to a “non-relativistic” calculation of form factors, we
will have mainly in mind this boost transformation though
the wave function has been obtained from an equation
with a relativistic kinetic energy. The conserved current
associated to this equation together with a local interac-
tion does not affect the expressions of the form factors,
eqs. (5).

2.3 Form factors in the point-form approach

It has been shown [11] that a calculation of form factors
in the point-form approach could be performed relatively
easily by using standard wave functions obtained from a
mass operator of the form

M = Mfree + Mint. (6)

This includes a large class of wave functions, since the
sum of the kinetic and potential energies appearing in
the standard Schrödinger equation can be identified with
the operator M2 (up to a factor). This holds for a two-
body system and provided the binding energy, E, is ap-
propriately redefined. Therefore, wave functions entering
the non-relativistic expressions of eq. (5) could be used in
principle. Actually, we will use wave functions obtained
from a mass operator of the type

M2 = 4 (m2 + p 2) + 4m V, (7)

which has a form similar to a Schrödinger equation, but
does not require the above energy correction.

In calculating the matrix element of the current, we
follow the approach used in ref. [12]. The single-particle
current is taken as the one expected from the field theory
underlying the “exact” calculation, i.e. the free-particle
one. This choice is dictated by the requirement to recover
the small coupling limit but beyond this limit there is no
reason this should provide the best description of the one-
body current. Possible corrections, involving off-shell ef-
fects, could be absorbed in two-body currents. Other two-
body currents could account for the effectiveness of the
degrees of freedom that relying on (relativistic) quantum
mechanics implies, for current conservation or for repro-
ducing the Born amplitude. Further ones, which ensure
the equivalence of different representations of the com-
plete interaction obtained by a unitary transformation,
do not need to be considered, provided that an appropri-
ate choice of the effective two-body interaction is made.
All of them cancel at qµ = 0. On the other hand, the nor-
malization of the current to the charge and the related
orthogonality condition should be recovered. These vari-
ous requirements fix the expression of the single-particle
matrix element. Contrary to ref. [12], where appropriate
boosts have to be performed, we provide an expression
whose Lorentz covariance is explicit:√

2Ef 2Ei 〈f |Jµ|i〉 =√
2Mf 2Mi

1
(2π)3

∫
d4p d4pf d4pi dηf dηi

×δ(p2 − m2) δ(p2
f − m2) δ(p2

i − m2)

×θ(λf · pf ) θ(λf · p) θ(λi · p) θ(λi · pi)

×δ4(pf + p − λfηf ) δ4(pi + p − λiηi)

×φf

((
pf − p

2

)2
)

φi

((
pi − p

2

)2
)

×
√

(pf + p)2 (pi + p)2 (pµ
f + pµ

i ). (8)
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In this expression, all quantities are Lorentz-invariant ones
(except obviously the current, which behaves as a four-
vector). The auxiliary variables, ηi and ηf , have been in-
troduced to make the covariance manifest2. When these
variables are integrated over, they give rise to three-dimen-
sional δ(...)-functions,

δ
(
pi+p − λi

λ0
i

(
p0

i +p0
) )

and δ
(
pf +p − λf

λ0
f

(p0
f +p0)

)
,

that are essential relations in the point-form approach.
The λµ

i and λµ
f four-vectors are unit vectors proportional

to the four-momenta of the total system in the initial and
final states, λµ

i = Pµ
i /Mi and λµ

f = Pµ
f /Mf . They can

be expressed in terms of the corresponding velocities3,
λ0 = (

√
1 − v2 )−1 and λ = v (

√
1 − v2 )−1 (c = 1). In

the c.m., it can be checked that the wave function φ(...)
only depends on the relative three-momentum of the two
particles. On the other hand, it can also be verified, by
direct integration or after performing a change of vari-
able, that the current of the system under consideration
is given by (

〈
J0

〉
, 〈J 〉 ) = ( 1 , v ), in agreement with the

standard normalisation of the wave function∫
dp

(2π)3
φ2(p ) = 1.

Expressions of the form factors, F1(q2) and F2(q2), can
be obtained in any frame. With an appropriate change of
variables, they can always be expressed in the forms they
take in the Breit frame (here defined by v = vf = −vi),
where they may be simpler. Using auxiliary quantities,
F̃1(q2) and F̃2(q2), they read

F1(q2)
√

2Mf 2Mi =

F̃1(q2) (Mf + Mi) − F̃2(q2) (Mf − Mi),

F2(q2)
√

2Mf 2Mi =

−F̃1(q2) (Mf − Mi) + F̃2(q2) (Mf + Mi), (9)

with

F̃1(q2) =
1 + v2

√
1 − v2

∫
dp

(2π)3
φf (ptf ) φi(pti),

F̃2(q2) v = − 1 + v2

√
1 − v2

∫
dp

(2π)3
φf (ptf )

p
ep

φi(pti). (10)

In the above equations, the velocity v, defined in the Breit
frame, is related to the momentum transfer by the relation

v2 =
Q2 + (Mf − Mi)2

Q2 + (Mf + Mi)2
. (11)

2 We keep here a definition of covariance that is often used
in the literature. Nevertheless, despite its appearance, a care-
ful examination would evidence an implicit dependence on the
reference frame used to calculate the original wave function.

3 The quantity, v, here refers to the usual velocity three-
vector, v, a notation that differs from the one employed in
ref. [11], where it represents a four-vector which corresponds
to our four-vector λµ.

The (Lorentz-) transformed momenta are defined as

(px, py, pz)tf = (px, py, (pz − v ep)/
√

1 − v2) ,

(px, py, pz)ti = (px, py, (pz + v ep)/
√

1 − v2) ,

together with ep =
√

m2 + p 2.

2.4 Wave functions and analytical results

For the wave functions of the ground and first excited
states, φ(p ) and φ∗(p ), we use solutions obtained from
eq. (7) with a Coulomb-like potential, V = −αeff

r . They
therefore fulfil the equation

[
4(m2 + p 2) − M2

]
φ(r) = 4m

αeff

r
φ(r). (12)

In momentum space, they read

φ(p ) =
√

4π
4κ5/2

(κ2 + p 2)2
,

φ∗(p ) =
√

4π
8κ∗5/2

(κ∗2 + p 2)3
(p 2 − κ∗2), (13)

where κ2 = m2 − 1
4M2, the total mass M being that one

obtained from the Bethe-Salpeter equation for the ground
state.

It has been shown [15,3] that the spectrum of the nor-
mal states for the Wick-Cutkosky model could be repro-
duced with a three-dimensional equation and a theoreti-
cally motivated effective interaction of the Coulomb-type
like the one used here. In particular, a relation between
the effective coupling, αeff , appearing in eq. (12) and the
one employed in the Bethe-Salpeter equation, α, has been
derived for any value it can take [3]. This relationship was
checked in detail in the non-relativistic limit and its va-
lidity was found to extend much beyond. When employed
in eq. (12), it provides a spectrum of normal states for
the Wick-Cutkosky model that does not differ by more
than a factor 2 in the limit αeff → ∞. Relatively minor
adjustments of the effective coupling are thus required to
reproduce the exact spectrum.

However, it is known that once an interaction model
reproduces experimental data such as binding energies or
phase shifts, a continuum of models having the same prop-
erties can be generated by applying a unitary transfor-
mation. These ones differ from the original one by their
non-locality which has typically an off-shell character. In a
phenomenological approach or in the absence of an under-
lying theory, the resulting uncertainty should be consid-
ered. In the present case, we have such a theory and while
we do not expect the bare interaction to be fully appro-
priate, we at least expect it to be recovered in the small
coupling limit. This allows one to discard a continuum
of phase equivalent interaction models which, beside their
arbitrariness, would have the wrong off-shell or non-local
behavior. This is not sufficient to totally eliminate any un-
certainty in principle. In deriving the effective interaction
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to be used in eqs. (6) or (7), one has to consider the se-
ries of the time-ordered diagrams that the Bethe-Salpeter
equation allows one to sum up and get rid of their depen-
dence on the total energy of the system, which character-
izes the coupling of channels with a different number of
particles. The procedure used in refs. [3,15] reminds one of
the Foldy-Wouthuysen transformation and, like this one,
provides a unique answer. One can imagine to carry out
the elimination of the energy dependence (the coupling
of large and small components for the Foldy-Wouthuysen
transformation) by mixing terms of different orders. In
this way, one generates a family of effective interactions
which should be equivalent up to a unitary transforma-
tion. For the present problem however, where only one
kind of exchanged boson with a unique coupling is con-
sidered, there is no physical support to proceed that way,
which would appear as completely arbitrary and unnat-
ural. Assuming one nevertheless does so, one should also
take into account that the interaction with the external
probe will be affected by the same unitary transforma-
tion with the result that predictions for observables are
not changed. Considering other interaction models, equiv-
alent up to a unitary transformation, is therefore an un-
necessary complication for our purpose. Results obtained
with the effective interaction of eq. (12) will thus represent
those of a family of “phase-equivalent” models.

While we believe that the non-uniqueness of the ef-
fective interaction is not a real source of concern, some
approximations in its derivation should be considered. At
the lowest order where it was performed, the effective in-
teraction, which mainly accounts for retardation effects
related to the underlying field theory model, keeps a lo-
cal character. Some non-locality is expected, however. It
is difficult to estimate its effect, but taking into account
that it would a priori break the degeneracy pattern of
the Coulomb potential evidenced by the Wick-Cutkosky
model and that the effective interaction in eq. (12) al-
ready provides a good description of the spectrum, not
much room is left for such a contribution when eq. (12) is
used. The situation is somewhat different for eq. (6). It is
easy to convince oneself that, to get the same spectrum as
eq. (12), the interaction part of the mass operator, Mint,
has to be non-local in any case, while wave functions are
unchanged.

A complementary and instructive information on the
derivation of effective interactions is given by the Coulomb
potential itself. This one supposes to consider the ladder
diagrams generated by solving the Bethe-Salpeter equa-
tion but also an infinite set of crossed diagrams that es-
sentially have the effect to cancel the renormalization that
the effective coupling in eq. (12) accounts for. Apart from
these extra contributions, the effective interaction can be
obtained as described above for the case of a scalar boson.
There is no indication that the dynamical effects under
discussion here provide a large contribution. The Coulomb
part of the interaction due to a photon exchange appearing
in a Dirac or Klein-Gordon equation is generally described
by a 1/r term.

It follows from the above discussion that wave func-
tions, eqs. (13), should be a good zeroth-order approxi-
mation for our study, including the extreme case M2 = 0.
Accordingly, we assume κ∗2 = 0.25κ2 = 0.25 (mαeff/2)2,
which differs from the Bethe-Salpeter result, κ∗2 = m2 −
1
4M∗2, by a few percent. With these wave functions, it
turns out that the form factors can be calculated analyti-
cally, allowing one to get insight into the main features evi-
denced by the results. We nevertheless checked that these
properties, for the most striking ones, are insensitive to
this choice. For that, we used a different (numerical) wave
function [14], more in the spirit of the point-form approach
advocated in ref. [12], i.e. obtained directly from the linear
mass operator, eq. (6). The effective interaction employed
in this calculation is closer to what field theory suggests,

Vint(p,p ′) = −m

ep

g2

(p − p ′)2
m

ep′
,

and its strength is fitted to reproduce the ground-state en-
ergy of the Wick-Cutkosky model. While it involves some
non-locality, allowing one to get insight into the corre-
sponding effect discussed above, it does not do as well as
eq. (12) for the spectrocopy of the excited states.

In the non-relativistic case, the elastic and inelastic
form factors are, respectively, given by

F el
1 (q2) =

κ4

(κ2 + Q2/16)2
, F el

2 (q2) = 0,

F inel
1 (q2) =

√
2

64κ4 Q2

(9κ2 + Q2)3
,

F inel
2 (q2) =

√
2

192κ6

(9κ2 + Q2)3
. (14)

Taking into account that M2
f − M2

i = 3κ2, one can ver-
ify that the condition of current conservation, eq. (2), is
fulfilled.

In the point-form approach, the elastic form factor,
written in a way that resembles the non-relativistic one,
reads

F1(q2 = −Q2) =
κ4

(
1 + 2 Q2

4M2

)
(
κ2 + Q2

16
(
1+ Q2

4M2

))2 (
1 + Q2

4M2

)4 ,

F2(q2 = −Q2) = 0. (15)

Interestingly, the factor 1/(1 + Q2

4M2 ) which multiplies the
quantity Q2/16 in the denominator of F1(q2) is the same
as the one sometimes introduced by hand in order to ac-
count for the Lorentz-contraction effect (see discussion in
ref. [16]). Contradicting asymptotic results (in QCD for
instance), the range of validity of this recipe is limited to
small Q2. Curiously, part of the extra factors also look like
a Lorentz-contraction effect.

As for the inelastic form factors for a transition from
the ground to the first radially excited state, they are most
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easily expressed in terms of the quantities, F̃1(q2) and
F̃2(q2), which can also be calculated analytically:

F̃1(q2) =
√

2 (1 + v2) (1 − v2)3

× 64κ4 v2 (16m2 − 4κ2(1 − v2))
(9κ2 + v2 (16m2 − 10κ2) + v4κ2)3

,

F̃2(q2) =
√

2 (1 + v2) (1 − v2)4

× 64 (3 + v2)κ6

(9κ2 + v2 (16m2 − 10κ2) + v4κ2)3
, (16)

where v2 is defined by eq. (11). These expressions gener-
alize those for the non-relativistic case, eq. (14) (we recall
that in this limit Q2 = 16 v2 m2). In contrast however,
they do not allow us to fulfil current conservation, eq. (2).

3 Results

In table 1, results are presented for elastic form factors
corresponding to small (α = 1), moderate (α = 3) and
strong binding (α = 2π). In the last case, the elastic form
factors in the point form vanish at finite Q2 and results
are actually those obtained when approaching the limit
α → 2π, with E = 2m − M = 1.90m and E = 1.95m.
For these energy values, the “non-relativistic” results, to
which the previous ones may be compared, are essentially
the same as for E = 2.0m, given in the table.

One immediately notices that the “non-relativistic” re-
sults are very close to the “exact” ones for all cases, includ-
ing the extreme case where the total mass of the system
is zero. This agreement extends up to Q2 = 100m2 with
an error of 20% for α = 1 and 50% for α = 2π. The
discrepancy at small momentum transfers is typically of
the order of Q2/16m2. Most probably, it can be traced
back to the wave function used in the “non-relativistic”
calculation or to the electromagnetic single-particle cur-
rent. These ingredients do not fully account for correc-
tions due to factors m/e (in the potential for instance)
or for the field theory character of the Wick-Cutkosky
model. A major lesson of these results is that relativistic
effects are not necessarily important and that most prob-
ably, for any non-relativistic calculation of form factors
of systems composed of spinless particles, there exists a
covariant calculation (the exact one in the present case)
which gives close results over a large range of momentum
transfers. However, this does not mean that this calcula-
tion involves all relativistic effects and is physically rele-
vant, especially with respect to current conservation. An
example is provided by the deuteron electrodisintegration
near threshold in the light-front approach. Two covari-
ant calculations of the transition form factors have been
shown to be very close to the non-relativistic ones up to
Q2 = 10 (GeV/c)2 [17], completely missing the contri-
bution due to the pair term whose relativistic character
is well known. In the non-relativistic approach, this con-
tribution, which is required to fulfil current conservation,

Table 1. Elastic form factor, F1(q
2), for the ground state.

Units for E and κ are the constituent mass, m. Results are
presented for different couplings and, for each of them, for
different approaches: Bethe-Salpeter equation (B.S.), “non-
relativistic” calculation (N.R.) and point-form approach (P.F.).
The value of α referred to in the table corresponds to the Bethe-
Salpeter equation, while the theoretical coupling for the “non-
relativistic” model, αeff , is slightly modified to reproduce the
exact binding energy for the ground state.

Q2/m2 0.01 0.1 1.0 10.0 100.0

α = 1

E = 0.0842

(κ2 = 0.0824)

B.S. 0.984 0.856 0.309 0.137–01 0.21–03

N.R. 0.985 0.864 0.323 0.136–01 0.17–03

P.F. 0.984 0.853 0.299 0.97–02 0.34–04

α = 3

E = 0.432

(κ2 = 0.385)

B.S. 0.996 0.962 0.705 0.139 0.50–02

N.R. 0.997 0.968 0.740 0.146 0.34–02

P.F. 0.995 0.949 0.621 0.56–01 0.23–03

α = 2π

E = 2.0

(κ2 = 1.0)

B.S. 0.998 0.983 0.848 0.339 0.285–01

N.R. 0.999 0.988 0.886 0.378 0.189–01

E = 1.90

P.F. 0.614 0.398–01 0.11–03 0.13–06 0.13–09

E = 1.95

P.F. 0.187 0.14–02 0.19–05 0.20–08 0.20–11

is essential to account for experiment in the low momen-
tum transfer range. How this contribution appears in the
covariant light-front formalism was shown later on [18].

The comparison with the point-form results evidences
a discrepancy that increases with the momentum trans-
fer as well as with the coupling strength. It becomes es-
pecially large when approaching the extreme case where
M = 0. Two features are worthwhile to be mentioned,
that stem from examining the analytic expressions of the
form factors, eq. (15). First, there is a contribution to
the squared-charge radius which varies like 1/M2, as it
was found numerically in ref. [13]. Second, the form fac-
tor drops more quickly with Q2 than in the “exact” or in
the “non-relativistic” calculations, roughly like 1/Q6 in-
stead of 1/Q4, as expected from the examination of the
Born amplitude. The discrepancy can be seen in table 1
for E = 1.90m and E = 1.95m, where the effect be-
comes especially sizeable when approaching Q2 = 4M2

and beyond. Some departures from the reference calcula-
tion could be expected in the ultra-relativistic limit, due
to the approximate character of the wave functions we
used for instance. Their magnitude is typically given by
the difference of the “non-relativistic” and “exact” calcu-
lations (B.S.), which can be obtained by examining the
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Table 2. Inelastic form factors, F1(q
2) and F2(q

2), for a
l = 0 → l = 0∗ transition, and α = 3, Ei = 0.4322 m,
κ2

i = 0.385 m2, Ef = 0.1036 m, κ2
f = 0.101 m2 for the exact

calculation and 0.096 m2 for the “non-relativistic” one.

Q2/m2 0.01 0.1 1.0 10.0 100.0

B.S.
F1 0.032–01 0.298–01 0.145–00 0.584–01 0.21–02
F2 0.369–00 0.340–00 0.165–00 0.665–02 0.22–04

N.R.
F1 0.032–01 0.296–01 0.151–00 0.550–01 0.12–02
F2 0.369–00 0.342–00 0.174–00 0.636–02 0.14–04

P.F.
F1 0.101–01 0.372–01 0.140–00 0.283–01 0.14–03
F2 0.324–00 0.293–00 0.119–00 0.22–03 −0.12–04

table. In comparison, the discrepancy for the point-form
results is orders of magnitude larger however.

Results for an inelastic transition are given in table
2. The results obtained in the “non-relativistic” approach
compare well with the “exact” ones over the full range of
Q2. The slight discrepancies for Q2 ≤ 10m2 are quite sim-
ilar to those observed for the elastic form factors. While
the point-form results compare well with the other ones
in the intermediate range, 0.1 < Q2/m2 < 3, they fail at
low and at large Q2. In the former case, F1(q2) does not
go to zero when Q2 → 0, violating the current conserva-
tion, eq. (2). In the latter case, F2(q2) evidences a change
in sign around Q2 � 10m2, also preventing one from ful-
filling this relation. This can be traced back to the differ-
ent behaviour of the intermediate form factors F̃1 and F̃2,
which keep the same sign but scale like Q−6 and Q−8 at
high Q2, respectively. These results for an inelastic transi-
tion complement those for the elastic case. Again, a large
discrepancy with “exact” results appears, but the bad be-
haviour of form factors at low as well as large momen-
tum transfers is more clearly correlated with a violation of
current conservation. Implementing this conservation law
could remove some of the problems. However, it does not
guarantee that the high-Q2 behaviour would be correctly
accounted for. In this domain, the constraints imposed by
the consideration of the Born amplitude should also be
considered.

4 Discussion and conclusion

The present study was motivated by the necessity to check
the reliability of retaining the single-particle current for
the calculation of form factors in the point form of rela-
tivistic quantum mechanics, which was recently employed
in different works [12,13]. With this aim, we considered
a simple model where the “exact” result is known. It is
found that, for momentum transfers up to 3-4 times the
constituent mass, the point-form approach does correctly
for small bindings and small couplings. However, large
discrepancies with the “exact” results appear as soon as
the momentum transfer or the coupling increases. They

can reach orders of magnitude. Detailed examination evi-
dences three features:

– The form factors decrease more rapidly than they
should. This points to an extra 1/Q2 dependence that
is absent in the “exact” calculation.

– For strong couplings, corresponding to a sizeable pres-
ence of high momentum components in the wave func-
tion, the charge radius turns out to be much larger
than the “exact” one.

– Finally, as emphasized by the results for an inelastic
transition, current conservation is strongly violated.

While results presented here offer the advantage to
be analytical, providing insight into the above features,
we also looked at a different effective interaction. It was
found that the above features qualitatively persist, indi-
cating that they are not specific to the effective interaction
employed in the calculation.

As expected, the “non-relativistic” approach is also
found to do well in situations amenable to a non-
relativistic calculation (small binding, low momentum
transfers). When looking at typical relativistic limits
(M → 0 or Q2 → ∞), departures show up but never
go beyond a factor two for the Q2 range considered here
(a result that by itself deserves an explanation). Surpris-
ingly, for cases that have a typical relativistic character,
it does considerably better than the point-form approach
which, a priori, was expected to provide results closer to
the “exact” ones.

Although it is not quite certain, there is good reason
to believe that the “non-relativistic” calculation does rela-
tively well at low Q2 because it fulfils current conservation.
With this respect, the failure of the point-form approach
as applied here, following recent works published in the
literature [12,13], has to reside in the incomplete charac-
ter of the one-body current operator. Current conservation
may be enforced by the replacement

〈Jµ〉 → 〈Jµ〉 − qµ 〈Jν〉 · qν/q2. (17)

Apart from the unsatisfactory character of this recipe, due
to the presence of a pole at q2 = 0 , it does not solve
the problem of the too fast drop-off of the elastic charge
form factor at high Q2. Whether a minimal set of two-
body currents will be sufficient to provide results in better
agreement with the “exact” ones at low Q2 is not clear,
however. These currents should also correct for the failure
of the point-form results to reproduce the Born amplitude
expected from the underlying field theory model, which
mainly concerns the region of high Q2.

Arguments supporting the relevance of the comparison
made here have been given in the text, especially in the in-
troduction and in the section concerning the choice of the
interaction model for the relativistic quantum-mechanical
approach. The possibility remains that the above failure
originates from missing something in the derivation of this
interaction. If this was the case, the comparison of the “ex-
act” results with those obtained in instant- or front-form
approaches should also evidence similar features. Results
obtained recently with these two approaches show, on the
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contrary, reasonable agreement [19]. For the “zero-range”
interaction model presented in ref. [20], the front-form re-
sults are identical to the exact ones while the instant-form
ones in the Breit frame deviate by 10–15% at most. As
the sensitivity to the interaction is essentially absent in
this case (the wave function is uniquely determined by
the mass of the system), this uncertainty is an indication
of the sensitivity to the precise choice of the current when
qµ �= 0. For a long-range interaction, like the one used in
this work, deviations from the “exact” results can reach
a factor 2 for the largest momentum transfers consid-
ered here, both in the instant- and front-form approaches.
This factor, which has nothing in common with the or-
ders of magnitude discrepancy obtained in the point-form
approach, most probably represents the sensitivity to the
interaction model (and perhaps some two-body currents).
The simplest choice has been made, without optimization
to reproduce the “exact” spectrum. Thus, these results
tend to validate the comparison of the Bethe-Salpeter re-
sults to those obtained in relativistic quantum-mechanics
approaches together with the field theory motivation un-
derlying the choice of the interaction in these cases.

While one expects that some of the remaining discrep-
ancies should be accounted for by contributions due to
two-body currents, it is striking that their role is consid-
erably larger for the point-form than for the other ap-
proaches. This points to the way this approach, originally
supposed to be described on an hyperboloid x · x = ct,
has been implemented in practice [11–13]. The procedure
relies on employing a unique wave function, issued from
an instant-form calculation, kinematically boosted to de-
scribe the initial and final states with the appropriate mo-
menta. The results suggest that the procedure is unable or
too crude to provide a single-particle current contribution
with the right size, contrary to the other approaches [20].

The above results cannot be applied directly to the cal-
culation of the deuteron or nucleon form factors [12,13].
However, the qualitative similarity in the results strongly
suggests that the kinematical boost, which provided a
nice description of the nucleon form factors, represents
an incomplete account of relativistic effects. In particu-
lar, the kinematical boost does not account for boost ef-
fects related to the interaction part, as simply illustrated
by the example of the total momentum itself which, as
is well known, contains the interaction in the point-form
approach [21]. As can be easily checked for a two-body
system, the momentum acquired in a boost receives a con-
tribution from the kinematical part, which represents the
total momentum enhanced by a factor 2 ek/M (2 ek is the
sum of the free-particle energies in the c.m.), and an in-
teraction part which cancels this enhancement so that the
total momentum is recovered. It is not a surprise there-
fore if instant-form or front-form calculations [19], where
both effects are accounted for simultaneously, do not ev-
idence the peculiar features of the point-form approach
ones when M → 0 or Q2 → ∞. With respect to these
two features, they are roughly in agreement with an “ex-
act” calculation. In view of the previous discussion, the
agreement for the nucleon form factors mentioned above

thus appears, most likely, as accidental and results from
neglecting significant contributions to the current. This
conclusion is to be preferred with two respects:

– It leaves some room for the well-known contribu-
tion of the coupling of the nucleon to the photon
through vector-meson exchange (vector-meson domi-
nance mechanism), which roughly provides half of the
proton’s squared charge radius. In a constituent quark
model, this effect can be partly accounted for by in-
troducing quark form factors. In a more refined model,
this supposes to include a quark-antiquark component
in the nucleon wave function as explored in ref. [22].

– On the other hand, it leaves room for another rela-
tivistic effect related to the nature of the coupling of
the constituents to the exchanged boson. This effect
increases the form factor at high Q2 rather than the
opposite as in ref. [13]. It is known to explain the dif-
ferent asymptotic form factors in a non-relativistic and
a relativistic calculation in QCD, which scale like 1/Q8

and 1/Q4, respectively (see for instance refs. [23,24]).

Altogether, two-body currents should produce quite size-
able contributions in present applications of the point-
form approach. Their role seems to be more essential
here than in other approaches. An open question is
whether a different way of implementing the point-form
approach [20] could minimize this role.

We are very indebted to W. Klink for information about his
work, which largely motivated the present one. Helpful discus-
sions with him are greatly appreciated.
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